Данная статья является реферативным изложением основной работы. Полный текст научной работы, приложения, иллюстрации и иные дополнительные материалы доступны на сайте VI Международного конкурса научно-исследовательских и творческих работ учащихся «Старт в науке» по ссылке: https://school-science.ru/6/7/37640.
Ученые обнаружили, что у современного поколения происходит снижение умственных способностей. «Если есть такая вещь, как калькулятор, который может посчитать все быстро и правильно, зачем себя утруждать?» – думают учащиеся. Вот и достаем мы при первой же необходимости калькуляторы и считаем. Мы рады, что не нужно утруждать себя подсчетами, родители наши рады, что все быстро сделано и правильно. А мозг при этом работает все хуже и медленнее.
В то же время, ученые доказывают, что активизирует мыслительную деятельность учащихся именно устный счет.
Устный счет – это математические вычисления, осуществляемые человеком без помощи дополнительных устройств (компьютер, калькулятор, счёты) и приспособлений (ручка, карандаш, бумага).
Оказывается: простое находится в сложном. При решении математических примеров активизируются и развиваются память, речь, внимание, способность воспринимать сказанное на слух, быстрота реакции, а значит, развиваются способности, необходимые для нашей учебной деятельности.
Актуальность. Ученые бьют тревогу по поводу стремительного снижения умственной способности человечества и предлагают каждому человеку как можно чаще тренировать мозг. Способов развития интеллекта много, но самым простым и доступным является устный счет. В своей работе я хочу показать, как можно при помощи устного счета считать быстро и правильно, что процесс выполнения математических действий оказывается полезным и интересным занятием.
Цель: расширить знания о методах и приемах устного счета.
Задачи:
1. Систематизировать известные приемы устного счета;
2. Выбрать для себя самые интересные и использовать их на практике.
Объект: процесс вычисления.
Гипотеза: при использовании устного счета скорость вычислений увеличивается, вычисления упрощаются, количество ошибок уменьшается, повышается вычислительная культура учащихся.
Новизна: знакомство с нестандартными приемами вычислительных навыков устного счета, приёмами умножения.
Методика исследования. Сбор информации в сети Интернет. Систематизация и обобщение материала. Анкетирование. Анализ полученных в ходе исследования данных (Приложение 1).
Продукт: буклет «Устный счет. Различные приемы умножения» (Приложение 2)
Практическая значимость: выполнение вычислений с применением нестандартных алгоритмов устного счета на практике, данный материал можно использовать на уроках математики и для дополнительного образования. Любой ученик может развить в себе интерес к науке математике через данный материал.
1. Из истории возникновения счета
1.1. Начало устного счета
Никто не знает, как впервые появилось число, как первобытный человек начал считать. Десятки тысяч лет назад первобытный человек собирал плоды деревьев, ходил на охоту, ловил рыбу, научился делать каменный топор и нож, и ему приходилось считать различные предметы, с которыми он встречался в повседневной жизни. Возникала необходимость отвечать на жизненно важные вопросы: сколько человек в племени, по сколько плодов достанется каждому, чтобы хватило всем, сколько расходовать сегодня, чтобы оставить про запас, сколько нужно сделать ножей и топоров. Таким образом, сам не замечая, человек начал считать и производить первые вычисления.
Вначале человек научился выделять единичные предметы. Например, из стаи волков, стада оленей он выделял одного вожака, из выводка птенцов – одного крепкого птенца. Научившись выделять один предмет из множества других, говорили «один», а если их было больше – «много». Даже для названия числа «один» часто пользовались словом, которым обозначался единичный предмет, например «луна», «солнце». Такое совпадение названия предмета и числа сохранилось в языке некоторых народов до наших дней.
Частые наблюдения множеств, состоящих из пары предметов (глаза, уши, крылья, руки) привели человека к представлению о числе два. До сих пор слово «два» на некоторых языках звучит так же, как «глаза» или «крылья».
Если предметов было больше двух, то первобытный человек говорил «много». Лишь постепенно человек научился считать до трёх, затем до пяти и до десяти и так далее. Название каждого числа отдельным словом было великим шагом вперёд.
Для счёта люди использовали пальцы рук, ног. Ведь и маленькие дети тоже учатся считать по пальцам. Однако этот способ годился только в пределах двадцати.
Выход нашелся: считать на пальцах до 10, а затем начинать сначала, отдельно подсчитывая количество десятков. Система счисления на основе десяти возникла как естественное развитие пальцевого счёта.
1.2. Изменения устного счета
По мере развития речи люди начали использовать слова для обозначения чисел. Не возникала необходимость показывать кому-то пальцы, камешки или реальные предметы, чтобы назвать их количество. Для изображения чисел стали применяться рисунки, чертежи или символы (Приложение 3). Существовали и системы с отдельными символами для каждой цифры до 9 включительно, как в арабской системе счисления, которую мы сейчас используем, а у греков имелся специальный символ и для 10.
При помощи пальцев рук люди научились не только считать большие числа, но и выполнять действия сложения и вычитания.
Древние торговцы для удобства счёта начали накладывать зерна и раковины на специальную дощечку, которая со временем стала называться абаком.
Особенно сложны и трудны были в старину действия умножения и деления, особенно последнее. «Умноженье – мое мученье, а с деленьем – беда» – говорили в старину. Тогда не существовало еще, как теперь, одного выработанного практикой приёма для каждого действия. В повседневной жизни использовали одновременно чуть ли не дюжину различных способов умножения и деления – приёмы один другого запутаннее. Запомнить такие приёмы не в силах был человек средних способностей. Каждый учитель счётного дела держался своего излюбленного приёма, каждый «магистр деления» (были такие специалисты) восхвалял собственный способ выполнения этого действия.
1.3. Как постепенно дошли люди до настоящей арифметики
Так, например в книге Всеволода Беллюстина «Как постепенно дошли люди до настоящей арифметики» (1909) изложено 27 способов умножения. Автор замечает: «весьма возможно, что есть и еще (способы), скрытые в тайниках книгохранилищ, разбросанные в многочисленных, главным образом рукописных сборниках». Наш современный способ умножения описан там под названием «шахматного».
Был так же и очень интересный, точный, лёгкий, но громоздкий способ «галерой» или «лодкой», названный так в силу того, что при делении чисел этим способом получается фигура, похожая на лодку или галеру. У нас такой способ употреблялся до середины XVIII века. («Арифметика» – старинный русский учебник математики, которую Ломоносов назвал «вратами своей учености») пользуется исключительно способом «галеры» (Приложение 4), не употребляя, впрочем, этого названия.
Упоминаются такие способы, как «загибанием», «решеткой», «задом наперед», «ромбом», «треугольником» и многие другие. Многие такие приемы для умножения чисел долгие и требуют обязательной проверки.
Интересно, что и наш способ умножения не является совершенным, можно придумать еще более быстрые и еще более надежные.
1.4. Таблица умножения
Впервые, в привычном нам виде, таблица умножения появилась в сочинении Никомаха Геразского (I-II вв. н. э.) – «Введение в арифметику». Так кто придумал таблицу умножения? Принято считать, что первый, кто ее открыл, – это Пифагор, хотя прямых доказательств и подтверждений этому нет. Присутствуют только косвенные доказательства. Как, например, Никомах Геразский ссылается на Пифагора в своем сочинении.
При этом существует одна из старейших таблиц умножения, приведенная на глиняных табличках, возраст которой около 4–5 тысяч лет, и была она обнаружена в Древнем Вавилоне. В основе ее лежала шестидесятеричная система исчисления. Таблица же с десятичной системой исчисления была найдена в Китае, в 305 году до нашей эры. Поэтому четко ответить на вопрос: «Кто придумал таблицу умножения», – не получится (Приложение 5).
Таблица умножения – те необходимые в жизни каждого человека знания, которые требуется элементарно заучить, что на первых школьных порах даётся совсем не элементарно. Это потом уже с легкостью мага мы «щелкаем» примеры на умножение: 2·3, 3·5, 4·6 и т.д., но со временем все чаще забываемся на множителях ближе к 9, особенно если счетной практики давно не ведали, отчего отдаемся во власть калькулятора или надеемся на свежесть знаний друга.
Однако, овладев одной незамысловатой техникой «ручного» умножения, мы можем запросто отказаться от услуг калькулятора. Уточнение: речь идет о школьной таблице умножения для чисел от 2 до 9, умножаемых на числа от 1 до 10.
Умножение для числа 9 – 9·1, 9·2 … 9·10 – легче выветривается из памяти и труднее пересчитывается вручную методом сложения, однако именно для числа 9 умножение легко воспроизводится» на пальцах». Растопырьте пальцы на обеих руках и поверните руки ладонями от себя. Мысленно присвойте пальцам последовательно числа от 1 до 10, начиная с мизинца левой руки и заканчивая мизинцем правой руки.
Допустим, хотим умножить 9 на 7. Загибаем палец с номером, равным числу, на которое мы будем умножать 9. В нашем примере нужно загнуть палец с номером 7. Количество пальцев слева от загнутого пальца показывает нам количество десятков в ответе, количество пальцев справа – количество единиц. Слева у нас 6 пальцев не загнуто, справа – 3 пальца. Таким образом, 9·7=63. (Приложение 6).
Умножение для числа 8 – 8·1, 8·2 … 8·10 – действия здесь похожи на умножение для числа 9 за некоторыми изменениями. Во-первых, поскольку числу 8 не хватает уже двойки до круглого числа 10, нам необходимо каждый раз загибать сразу два пальца – с номером х и следующий палец с номером х+1. Во-вторых, тотчас же после загнутых пальцев мы должны загнуть еще столько пальцев, сколько осталось не загнутых пальцев слева.
В-третьих, это напрямую работает при умножении на число от 1 до 5, а при умножении на число от 6 до 10 нужно отнять от числа х пятерку и выполнить расчёт как для числа от 1 до 5., а к ответу затем добавить число 40, потому что иначе придется выполнять переход через десяток, что не совсем удобно «на пальцах». Вообще надо заметить, что умножение для чисел ниже 9 тем неудобнее выполнять «на пальцах», чем ниже число расположено от 9.
Теперь рассмотрим пример умножения для числа 8. Допустим, хотим умножить 8 на 3. Загибаем палец с номером 3 и за ним палец с номером 4 (3+1). Слева у нас осталось 2 незагнутых пальца, значит нам необходимо загнуть еще 2 пальца после пальца с номером 4 (это будут пальцы с номерами 5, 6 и 7). Осталось 2 пальца не загнуто слева и 4 пальца – справа. Следовательно, 8·3=24.
Еще пример: вычислить 8·8=? Как было сказано выше, при умножении на число от 6 до 10 нужно отнять от числа х пятерку, выполнить расчет с новым число х-5, а затем добавить к ответу число 40. У нас х=8, значит загибаем палец с номером 3 (8–5=3) и следующий палец с номером 4 (3+1). Слева два пальца остались не загнуты, значит загибаем еще два пальца (с номером 5,6). Получаем: слева 2 пальца не загнуты и справа – 4 пальца, что обозначает число 24. Но к этому числу нужно еще добавить 40: 24+40=64. В итоге 8·8=64 (Приложение 7).
1.5. Специалисты в устном счете
Уметь считать правильно и быстро – замечательная способность человеческого ума. Но далеко не все умеют ею пользоваться. Вместе с тем, счет в уме дает огромные преимущества. Это уверенность во многих житейских ситуациях, не только связанных непосредственно с вычислениями, что само по себе очень полезно, но и психологическая уверенность.
Быстрый счет часто означает не интеллектуальную способность мозга, а умение применять на практике методики счета в уме, разработанные и описанные учеными – математиками. Для их освоения вовсе необязательно иметь выдающиеся математические способности, достаточно изучить эти методики по их книгам и активно применить в жизни.
Особые способности в устном счёте встречаются с давних пор. Ими обладали многие ученые, в частности Андре Ампер и Карл Гаусс. Умение быстро считать было присуще и многим людям, чья профессия была далека от математики и науки в целом.
До второй половины XX века были популярны выступления специалистов в устном счёте. Иногда они устраивали показательные соревнования между собой. Известными российскими «суперсчетчиками» являются Арон Чиквашвили, Давид Гольдштейн, Юрий Горный, зарубежными – Борислав Гаджански, Вильям Клайн, Томас Фулер и другие (Приложение 8).
Хотя некоторые специалисты уверяли, что дело во врожденных способностях, другие аргументировано доказывали обратное: «дело не только и не столько в каких-то исключительных «феноменальных» способностях, а в знании некоторых математических законов, позволяющих быстро производить вычисления» и охотно раскрывали эти законы.
Истина как обычно, оказалась на некоей «золотой середине» сочетания природных способностей и грамотного, трудолюбивого их пробуждения, взращивания и использования. Те, кто следуя Трофиму Лысенко уповают исключительно на волю и напористость, со всеми уже хорошо известными способами и приемами устного счёта обычно при всех стараниях не поднимаются выше очень и очень средних достижений.
Более того, настойчивые попытки «хорошенько нагрузить» мозг такими занятиями как устный счёт, шахматы вслепую и т.п. легко могут привести к перенапряжению и заметному падению умственной работоспособности, памяти и самочувствия (а в наиболее тяжелых случаях – и к шизофрении). С другой стороны и одаренные люди при беспорядочном использовании своих талантов в такой области как устный счёт быстро «перегорают» и перестают быть в состоянии длительно и устойчиво показывать яркие достижения. Один из примеров удачного сочетания обоих условий (природной одаренности и большой грамотной работы над собой) показал наш соотечественник, уроженец Алтайского края Юрий Горный.
Пожалуй, единственная научно обоснованная и достаточно подробно разработанная система резкого повышения быстроты устного счёта создана была в годы второй мировой войны цюрихским профессором математики Я. Трахтенбергом. Она известна под названием «Система быстрого счёта». История ее создания необычная. В 1941 г. гитлеровцы бросили Трахтенберга в концлагерь.
Чтобы уцелеть в нечеловеческих условиях и сохранить нормальной свою психику, Трахтенберг начал разрабатывать принципы ускоренного счета. За четыре страшных года пребывания в концлагере профессору удалось создать стройную систему ускоренного обучения детей и взрослых основам быстрого счёта. Уже с самого начала результаты были самые отрадные. Учащиеся радовались вновь приобретенным навыкам и с воодушевлением двигались вперед. Если раньше их отталкивала монотонность, то сейчас их привлекало разнообразие приёмов. Шаг за шагом, благодаря достигнутым ими успехам, рос интерес к занятиям. После войны Трахтенберг создал и возглавил Цюрихский математический институт, получивший мировую известность.
Также разработкой приемов быстрого счета занимались другие ученые: Яков Исидорович Перельман, Георгий Берман и другие.
2. Устный счет – гимнастика ума. Различные приемы умножения
2.1. Умножение на 11 числа, сумма цифр которого не превышает 10
Чтобы умножить на 11 число, сумма цифр которого 10 или меньше 10, надо мысленно раздвинуть цифры этого числа, поставить между ними сумму этих цифр, а затем к первой цифре прибавить 1, а вторую и последнюю (третью) цифру оставить без изменения.
Пример 1:
а) 17∙11 = 1 (1+7) 7 = 187;
б) 32∙11 = 3 (3+2) 2 = 352.
2.2. Умножение на 11 числа, сумма цифр которого больше 10
Чтобы умножить на 11 число, сумма цифр которого 10 или больше 10, надо мысленно раздвинуть цифры этого числа, поставить между ними сумму этих цифр, а затем к первой цифре прибавить 1, а вторую и последнюю (третью) цифру оставить без изменения.
Пример 2:
а) 86х11 = 8 (8+6) 6 = 8 (14) 6 = (8+1) 46 = =946;
б) 37х11 = 3 (3+7) 7 = 3 (10) 7 = (3+1) 07 = =407.
2.3. Умножение на одиннадцать (по Трахтенбергу)
Пример 3
533∙11
Ответ пишется под 533 по одной цифре справа налево, как указано в правилах.
Первое правило. Напишите последнюю цифру числа 533 в качестве правой цифры результата
533∙11
3
Второе правило. Каждая последующая цифра числа 533 складывается со своим правым соседом и записывается в результат.3+3 будет 6. Перед тройкой записываем результат 6.
533∙11
63
Применим правило еще раз: 5+3 будет 8. Записываем и эту цифру в результате:
533∙11
863
Третье правило. Первая цифра числа 533, то есть 5, становится левой цифрой результата:
533∙11
5863
Ответ: 5863.
2.4. Умножение на 22, 33, 44, 55…, 99
Чтобы двузначное число умножить на 22, 33, …, 99, надо этот множитель представить в виде произведения однозначного числа (от 2 до 9) на 11, то есть 33 = 3х11; 44 = 4х11 и так далее. Затем произведение первых чисел умножить на 11.
Пример 4:
а) 52∙22 = 52∙2∙11 = 104∙11 = 1144;
б) 28∙44 = 28∙4∙11 = 112∙11 = 1232;
в) 73∙55 = 73∙5∙11 = 365∙11 = 4015;
г) 44∙99 = 44∙9∙11 = 396∙11 = 4356.
2.5. Умножение на число 111, 1111 и так далее, зная правила умножения двузначного числа на число 11
Если сумма цифр первого множителя меньше 10, надо мысленно раздвинуть цифры этого числа на 2, 3 и так далее шага, сложить цифры и записать соответствующее количество раз их сумму между раздвинутыми цифрами. Количество шагов всегда меньше количества единиц на 1.
Пример 5:
а) 34∙111 = 3 (3+4) (3+4) 4 = 3774 (количество шагов – 2)
б) 54∙1111 = 5 (5+4) (5+4) (5+4) 4 = 59994 (количество шагов – 3)
Если сумма цифр первого множителя равна 10 или более 10, надо мысленно раздвинуть цифры этого числа на 2, 3 и так далее шага, сложить цифры и записать соответствующее количество раз их сумму между раздвинутыми цифрами. к первой цифре 7 прибавить 1, получим 8, далее 3+1 = 4; а последние цифры 3 и 6 оставляем без изменения. Получаем ответ 8436.
Количество шагов всегда меньше количества единиц на 1
Пример 6:
76∙111 = 7 (7+6) (7+6) 6 = 7 (13) (13) 6 = (7+1) (3+1) 36 = 8436.
2.6. Умножение двузначного числа на 101, трёхзначного на 1001 и т.д.
Приписать число к самому себе. Умножение закончено.
Пример 7:
а) 52х101 = 5252;
б) 133∙1001 = 133133;
в) 3438∙10001 = 34383438;
г) 246932∙1000001 = 246932246932.
2.7. Умножение на 37
Чтобы устно умножить число на 37, надо это число разделить на 3 и умножить на 111. Прежде чем научиться устно умножать на 37, надо хорошо знать признак делимости и таблицу умножения на 3.
Пример 8:
а) 24∙37 = (24:3)∙37∙3 = 8∙111 = 888;
б) 54∙37 = (54:3)∙37∙3 =18∙111 = 1998.
2.8. Алгоритм перемножения двузначных чисел, близких к 100
Если нужно перемножить два двузначных числа, близких к 100, то необходимо:
1) найти недостатки сомножителей до сотни; 2 и 3
2) вычесть из одного сомножителя недостаток второго до сотни; 98–3=95
3) к результату приписать двумя цифрами произведение недостатков
сомножителей до сотни. 2х3 = 06
Пример 9
98∙97
1) 2 и 3
2) 98–3 = 95
3) к результату приписать 2∙3 = 06
98∙97 = 9506.
2.9. Умножение трёхзначного числа на 999
При умножении трёхзначного числа на 999 получается шестизначное число. Первые три цифры – есть умножаемое число, только уменьшенное на единицу, а остальные три цифры (кроме последней) – «дополнения» первых до 9.
Пример 10:
а) 285х999 = 284715;
б) 943х999 = 942057;
в) 883х999 = 882117.
2.10. Умножение на шесть (по Трахтенбергу)
Нужно прибавить к каждой цифре половину «соседа».
Пример 11:
622084∙6 = 37332504
622084∙ 6, 4 является правой цифрой этого числа и, так 4 как «соседа» у неё нет, прибавлять нечего.
6222084∙6 Вторая цифра 8, «сосед» – 4. Мы берём 8 04 прибавляем половину 4 (2) и получаем 10, ноль пишем, 1 в перенос.
6222084∙6 Следующая цифра ноль. Мы прибавляем к ней 504 половину «соседа» 8 (4), то есть 0 + 4 = 4 плюс перенос (1). Остальные цифры аналогичны.
37332504.
Правило умножения на 6: является «сосед» чётным или не чётным – никакой роли не играет. Мы смотрим только на саму цифру: если она чётная, прибавляем к ней её целую часть половины «соседа», если нечётная, то кроме половины «соседа» прибавляем еще 5.
Пример 12:
443052∙6 = 2658312
443052∙6, 2 – чётная и не имеет «соседа», напишем её снизу
2
443052х6, 5 – нечётная: 5+5 и плюс половина «соседа» 2 (1)
12 будет 11. Запишем 1 и в перенос 1
12
443052∙6, половина от 5 будет 2, и прибавим перенос 1, то будет 3
312
443052∙6, 3 – нечетная, 3 + 5 = 8
8312
443052∙6, 4 + половина от 3 (1) будет 5
58312
443052∙6, 4 + половина от 4 (2) будет 6
658312
443052∙6, ноль + половина от 4 (2) будет 2
2658312 . .
Заключение
Знание приемов устного счета позволяет упрощать вычисления, экономить время, развивает логическое мышление и гибкость ума. Процесс выполнения математических действий при этом оказывается полезным и интересным занятием.
Мы убедились, что устный счет это уже не тайна, а научно разработанная система. А если есть система, то значит, ее можно изучать, ей можно следовать, ею можно овладевать.
Рассмотренные методы устного счета иллюстрируют многолетний кропотливый труд ученых по выявлению простого в сложном, игры с цифрами.
Используя некоторые из этих методов на уроках или дома, можно развить скорость вычислений, привить интерес к математике, добиться успехов в изучении всех школьных предметов. При использовании устного счета вычисления упрощаются, количество ошибок уменьшается, повышается вычислительная культура учащихся.
Рассматривая старинные способы вычислений и современные приёмы быстрого устного счёта, мы видим, что как в прошлом, так и в будущем, без математики, науки созданной разумом человека, не обойтись.
При изучении старинных способов вычислений выяснили, что эти арифметические действия были трудными и сложными из-за многообразия способов и их громоздкости выполнения. А современные способы вычислений просты и доступны всем.
При знакомстве с научной литературой были обнаружены более быстрые и надежные способы вычислений.
Результаты работы оформлены в буклете «Устный счет. Различные приемы умножения», который может быть предложен одноклассникам. Возможно, что с первого раза не у всех получится быстро выполнять вычисления с применением этих приемов. Необходима постоянная вычислительная тренировка. Она и поможет приобрести полезные вычислительные навыки.
Приложение 1
Анализ анкетирования
Для того чтобы выяснить, знают ли современные школьники другие способы умножения кроме тех, которые производят в столбик было проведено анкетирование.
Я провел анкетирование среди учащихся 5, 7 и 11 классов. Всего было опрошено 43 ученика.
Вопросы анкеты:
1. Как часто ты пользуешься калькулятором?
2. Умеешь ли ты быстро и правильно считать?
3. Знаешь ли ты какие-либо приемы быстрого счета?
4. Хотел бы расширить свои познания в этой области?
5. Как ты думаешь, развивает ли устный счет память, внимание, способность сосредоточиться?
Результаты опроса:
1. Часто: 87%;
Иногда: 13 %;
Не пользуюсь: 0 %.
2. Умею: 65 %;
Считаю медленно: 35 %;
Не умею: 0 %.
3. Да: 80 %;
Что-то слышал: 20 %.
4. Да 96 %;
Нет 0 %.
Не знаю 4 %
5. Да 100 %;
Нет 0 %.
Проведя статистическую обработку данных, я сделал вывод, что далеко не все учащиеся знают приемы устного счета, поэтому целесообразно для учеников 5–11-х классов создать буклет с приемами быстрого счета, чтобы использовать их при выполнении умножений.
Библиографическая ссылка
Игольченко Д.В. ПРОСТОЕ В СЛОЖНОМ. УСТНЫЙ СЧЕТ // Международный школьный научный вестник. – 2019. – № 1-3. ;URL: https://school-herald.ru/ru/article/view?id=892 (дата обращения: 03.01.2025).